Skip to content

What Successful Science Teachers Do 75 Research-Based Strategies

Best in textbook rentals since 2012!

ISBN-10: 1412972345

ISBN-13: 9781412972345

Edition: 2010

Authors: Michele Cheyne, Randy K. Yerrick, Neal A. Glasgow, Neal A. Glasgow

List price: $38.95
Shipping box This item qualifies for FREE shipping.
Blue ribbon 30 day, 100% satisfaction guarantee!
what's this?
Rush Rewards U
Members Receive:
Carrot Coin icon
XP icon
You have reached 400 XP and carrot coins. That is the daily max!

Customers also bought

Book details

List price: $38.95
Copyright year: 2010
Publisher: Corwin Press
Publication date: 9/20/2010
Binding: Paperback
Pages: 272
Size: 7.25" wide x 10.50" long x 0.75" tall
Weight: 1.232
Language: English

Michele C. Cheyne is a Clinical Faculty member in Science Education at the University of Pittsburgh where she teaches a variety of courses in the secondary science teacher preparation program. She also supervises pre-service teachers during their clinical experiences and works closely with in-service teachers. She has worked with Pittsburgh Public Schools on several projects and provides professional development for professional laboratory training programs. She has worked with the Interstate New Teachers Assessment and Support Consortium in Washington, DC as a member of the committee that wrote the 2001 document Model Standards for Licensing General and Special Education Teachers of…    

Randy K. Yerrick is Professor of Science Education and Associate Dean of Educational Technology at the State University of New York at Buffalo. He began his career as a chemistry, physics, and math teacher in Michigan schools before becoming a full-time researcher in science education. Dr. Yerrick's research focuses on implementing contemporary visions of science inquiry in lower track classrooms where students share a strong history of failure and antisocial school behaviors. Dr. Yerrick has conducted ethnographies and critical autoethnographies in a variety of diverse teaching contexts as he continues to examine unresolved school issues of equity and diversity promoted by the continuous…    

Neal A. Glasgow has been involved in education on many levels. His experience includes serving as a sec-ondary school science and art teacher both in California and New York, as a university biotechnol-ogy teaching laboratory director and laboratory tech-nician, as an educational consultant, and as a frequent educational speaker on many topics. He is the author of five books on educational topics: What Successful Teachers Do: 91 Research-Based Strategies for New and Veteran Teachers (2003), Tips for the Science Teacher: Research-Based Strategies to Help Students Learn (2001), New Curriculum for New Times: A Guide to Student-Centered Problem-Based Learning (1997), Doing Science: Innovative…    

Foreword
Preface
Acknowledgments
About the Authors
Introduction
General Science Instruction
Encourage Students to Become More Involved and Interested in Science
Guide Students to Engage in Science-Appropriate Discourse
Utilize Graphic Organizers in Your Classroom
Increase Depth of Coverage to Improve Student Learning
Foster Self-Efficacy and Motivation in Your Students
Challenge Your Students With Different Levels of Questioning
Use the 5E Instructional Model
Support Your Students to Engage Effectively in Disciplinary Argumentation
Utilize Mind Mapping to Improve Student Achievement
Test Students' Ideas to Facilitate Reasoning Skills
Create an Emotionally Positive Science Classroom Environment
Engage Students With Historically Poor School Achievement
Include Students With Special Needs in Student-Centered Instruction
Scientific Inquiry and Laboratory Experience
Engage Your Students in Inquiry-Based Science
Teach Model-Based Inquiry Over the Scientific Method
Use Problem-Based Learning to Introduce Students to Inquiry-Based Science
Implement Inquiry-Based Instruction in Low-Track Classes
Attain Educational Goals Through Laboratory Experiences
Convert Traditional Labs to Inquiry-Based Activities
Align the Goals of Dissection to the Curriculum
Collaborative Teaching and Learning
Fine-Tune Collaborative Student Relationships With the Socratic Seminar
Teach Your Students Collaborative Strategies and Skills
Utilize Formal Cooperative Learning Methods in the Classroom
Introduce Students to Constructive, Cooperative, and Academic Controversy
Communicate Beyond the Classroom by Using Electronic Pen Pals
Utilizing Technology for the Classroom and Professional Development
Add Technological Tools to Your Students' Learning
Build on Your Students? Internet Skills for Use in the Classroom
Use Technology to Accommodate Different Learning Styles of Your Students
Give Students Opportunities to Use Media Production for Classwork
Incorporate Mobile Technology into Student Assignments
Model Inquiry with Your Students Using Limited Resources
Update Your Approach to Literacy-Related Content Activities
Foster Literacy Development Through Visual Texts and Media
Utilize Portable Media Players to Bring Exemplary Resources Into Teaching
Find Opportunities to Record Yourself Teaching to Share With Peers
Science Assessment
Look at Formative Assessment in a Coherent and Cohesive Way
Use Standards-Based Inquiry to Prepare Students for Standards-Based Tests
Align Instruction and Assessment Tools to State Curriculum Standards
Utilize Formative Assessment to Better Engage Students in Content and Instruction
Add a Classroom Response System for Instant Formative Assessment
Design Formative Assessment for Data to Inform Instruction
Encourage Assigned Textbook Reading by Giving Open-Book Tests
Focus on Students' Writing Strengths
Culturally Responsive Teaching and Learning
Avoid Culturally Stereotyping Science Students
Make Academic Success Your First Priority for All Students
Reach Students From Unfamiliar Cultural and Linguistic Backgrounds
Structure Homework for Success for Students From Nondominant Backgrounds
Develop Science Standards With a Multicultural Perspective
Broaden Discourse Opportunities to Invite a Diverse Range of Contributions
Provide Diverse Learning Opportunities for Student Discourse
Manage and Change Your Students' Misconceptions
Guide Students to Choose Authentic Problems to Solve
Utilize Meaningful Cues With Your English Language Learners
Provide ELLs With Opportunities for Extended Interactions in Group Work
The Complex Nature of the Gender Gap in Science
Examine the Evolving Nature of Gender Issues in the Science Classrooms
Change the Opportunities and Experiences of Girls in the Science Classroom
Represent Science in Ways That Encourage Girls to Stay Interested
Improve Attitudes Toward Science Through STS Approaches
Science and Literacy
Address the Three Key Elements of Reading Fluency in Science Instruction
Use Scaffolding to Improve Science Reading Comprehension
Consider Reading as Inquiry With Primary Literature
Focus on Developing Scientific Literacy and Student Reasoning
Use Paraphrasing to Promote Reading Comprehension in Science Textbooks
Utilize Think-Alouds to Reveal Students' Thought Processes While Reading
Select Commercial Reading Programs That Can Improve Scientific Literacy
Use a Variety of Print Materials to Inspire Student Reading and Writing
Expand Vocabulary Instruction to Improve Comprehension and Motivation
Use Students' Native Languages in Science Literacy Instruction
Families and Science Instruction
Avoid the "Blame Game" Mindset
Involve Low-Income Parents in Their Children's Academic Learning
Understand How Homework Can Present Problems for Students and Families
Change Parents' Attitudes Toward Science to Change Students' Attitudes
Involve Community Members in Learning to Explore Home-Based Discourse
Recognize the Diverse Needs of Language-Minority Students and Families
Consider Parental Responses to a Child's Learning Disability
Index