Skip to content

Introduction to Heat Transfer

Best in textbook rentals since 2012!

ISBN-10: 0470501960

ISBN-13: 9780470501962

Edition: 6th 2011

Authors: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine

List price: $287.95
Blue ribbon 30 day, 100% satisfaction guarantee!
what's this?
Rush Rewards U
Members Receive:
Carrot Coin icon
XP icon
You have reached 400 XP and carrot coins. That is the daily max!

Description:

Completely updated, the sixth edition provides engineers with an in-depth look at the key concepts in the field. It incorporates new discussions on emerging areas of heat transfer, discussing technologies that are related to nanotechnology, biomedical engineering and alternative energy. The example problems are also updated to better show how to apply the material. And as engineers follow the rigorous and systematic problem-solving methodology, they'll gain an appreciation for the richness and beauty of the discipline.
Customers also bought

Book details

List price: $287.95
Edition: 6th
Copyright year: 2011
Publisher: John Wiley & Sons, Incorporated
Publication date: 6/13/2011
Binding: Hardcover
Pages: 992
Size: 8.00" wide x 9.75" long x 1.25" tall
Weight: 4.158
Language: English

Symbols
Introduction
What and How?
Physical Origins and Rate Equations
Relationship to Thermodynamics
Units and Dimensions
Analysis of Heat Transfer Problems: Methodology
Relevance of Heat Transfer
Summary
Introduction to Conduction
The Conduction Rate Equation
The Thermal Properties of Matter
The Heat Diffusion Equation
Boundary and Initial Conditions
Summary
One-Dimensional, Steady-State Conduction
The Plane Wall
An Alternative Conduction Analysis
Radial Systems
Summary of One-Dimensional Conduction Results
Conduction with Thermal Energy Generation
Heat Transfer from Extended Surfaces
The Bioheat Equation
Thermoelectric Power Generation
Micro- and Nanoscale Conduction
Summary
Two-Dimensional, Steady-State Conduction
Alternative Approaches
The Method of Separation of Variables
The Conduction Shape Factor and the Dimensionless Conduction Heat Rate
Finite-Difference Equations
Solving the Finite-Difference Equations
Summary
Transient Conduction
The Lumped Capacitance Method
Validity of the Lumped Capacitance Method
General Lumped Capacitance Analysis
Spatial Effects
The Plane Wall with Convection
Radial Systems with Convection
The Semi-Infinite Solid
Objects with Constant Surface Temperatures or Surface Heat Fluxes
Periodic Heating
Finite-Difference Methods
Summary
Introduction to Convection
The Convection Boundary Layers
Local and Average Convection Coefficients
Laminar and Turbulent Flow
The Boundary Layer Equations
Boundary Layer Similarity: The Normalized Boundary Layer Equations
Physical Interpretation of the Dimensionless Parameters
Momentum and Heat Transfer (Reynolds) Analogy
Summary
External Flow
The Empirical Method
The Flat Plate in Parallel Flow
Methodology for a Convection Calculation
The Cylinder in Cross Flow
The Sphere
Flow Across Banks of Tubes
Impinging Jets
Packed Beds
Summary
Internal Flow
Hydrodynamic Considerations
Thermal Considerations
The Energy Balance
Laminar Flow in Circular Tubes: Thermal Analysis and Convection Correlations
Convection Correlations: Turbulent Flow in Circular Tubes
Convection Correlations: Noncircular Tubes and the Concentric Tube Annulus
Heat Transfer Enhancement
Flow in Small Channels
Summary
Free Convection
Physical Considerations
The Governing Equations for Laminar Boundary Layers
Similarity Considerations
Laminar Free Convection on a Vertical Surface
The Effects of Turbulence
Empirical Correlations: External Free Convection Flows
Free Convection Within Parallel Plate Channels
Empirical Correlations: Enclosures
Combined Free and Forced Convection
Summary
Boiling and Condensation
Dimensionless Parameters in Boiling and Condensation
Boiling Modes
Pool Boiling
Pool Boiling Correlations
Forced Convection Boiling
Condensation: Physical Mechanisms
Laminar Film Condensation on a Vertical Plate
Turbulent Film Condensation
Film Condensation on Radial Systems
Condensation in Horizontal Tubes
Dropwise Condensation
Summary
Heat Exchangers
Heat Exchanger Types
The Overall Heat Transfer Coefficient
Heat Exchanger Analysis: Use of the Log Mean Temperature Difference
Heat Exchanger Analysis: The Effectiveness-NTU Method
Heat Exchanger Design and Performance Calculations
Additional Considerations
Summary
Radiation: Processes and Properties
Fundamental Concepts
Radiation Heat Fluxes
Radiation Intensity
Blackbody Radiation
Emission from Real Surfaces
Absorption, Reflection, and Transmission by Real Surfaces
Kirchhoff's Law
The Gray Surface
Environmental Radiation
Summary
Radiation Exchange Between Surfaces
The View Factor
Blackbody Radiation Exchange
Radiation Exchange Between Opaque, Diffuse, Gray Surfaces in an Enclosure
Multimode Heat Transfer
Implications of the Simplifying Assumptions
Radiation Exchange with Participating Media
Summary
Thermophysical Properties of Matter
Mathematical Relations and Functions
Thermal Conditions Associated with Uniform Energy Generation in One-Dimensional, Steady-State Systems
The Gauss-Seidel Method
The Convection Transfer Equations
Boundary Layer Equations for Turbulent Flow
An Integral Laminar Boundary Layer Solution for Parallel Flow over a Flat Plate
Index.