Physics for Scientists and Engineers

ISBN-10: 0534409563
ISBN-13: 9780534409562
Edition: 6th 2004 (Revised)
List price: $143.95
30 day, 100% satisfaction guarantee

If an item you ordered from TextbookRush does not meet your expectations due to an error on our part, simply fill out a return request and then return it by mail within 30 days of ordering it for a full refund of item cost.

Learn more about our returns policy

Description: This best-selling, calculus-based text is recognized for its carefully crafted, logical presentation of the basic concepts and principles of physics. PHYSICS FOR SCIENTISTS AND ENGINEERS, Sixth Edition, maintains the Serway traditions of concise  More...

what's this?
Rush Rewards U
Members Receive:
coins
coins
You have reached 400 XP and carrot coins. That is the daily max!
You could win $10,000

Get an entry for every item you buy, rent, or sell.

Study Briefs

Limited time offer: Get the first one free! (?)

All the information you need in one place! Each Study Brief is a summary of one specific subject; facts, figures, and explanations to help you learn faster.

Add to cart
Study Briefs
Periodic Table Online content $4.95 $1.99
Add to cart
Study Briefs
Business Ethics Online content $4.95 $1.99
Add to cart
Study Briefs
Business Law Online content $4.95 $1.99

Customers also bought

Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading

Book details

List price: $143.95
Edition: 6th
Copyright year: 2004
Publisher: Brooks/Cole
Publication date: 7/21/2003
Binding: Hardcover
Pages: 768
Size: 8.50" wide x 10.75" long x 1.00" tall
Weight: 4.048
Language: English

This best-selling, calculus-based text is recognized for its carefully crafted, logical presentation of the basic concepts and principles of physics. PHYSICS FOR SCIENTISTS AND ENGINEERS, Sixth Edition, maintains the Serway traditions of concise writing for the students, carefully thought-out problem sets and worked examples, and evolving educational pedagogy. This edition introduces a new co-author, Dr. John Jewett, at Cal Poly ? Pomona, known best for his teaching awards and his role in the recently published PRINCIPLES OF PHYSICS, Third Edition, also written with Ray Serway. Providing students with the tools they need to succeed in introductory physics, the Sixth Edition of this authoritative text features unparalleled media integration and a newly enhanced supplemental package for instructors and students!

Raymond A. Serway is Physics Professor Emeritus at James Madison University, Virginia.

John W. Jewett, Jr., earned his undergraduate degree in physics at Drexel University and his doctorate at Ohio State University, specializing in optical and magnetic properties of condensed matter. Dr. Jewett began his academic career at Richard Stockton College of New Jersey, where he taught from 1974 to 1984. He is currently Emeritus Professor of Physics at California State Polytechnic University, Pomona. Through his teaching career, Dr. Jewett has been active in promoting science education. In addition to receiving four National Science Foundation grants, he helped found and direct the Southern California Area Modern Physics Institute (SCAMPI) and Science IMPACT (Institute for Modern Pedagogy and Creative Teaching). Dr. Jewett's honors include the Stockton Merit Award at Richard Stockton College in 1980, selection as Outstanding Professor at California State Polytechnic University for 1991-1992, and the Excellence in Undergraduate Physics Teaching Award from the American Association of Physics Teachers (AAPT) in 1998. In 2010, he received an Alumni Lifetime Achievement Award from Drexel University in recognition of his contributions in physics education. He has given over 100 presentations both domestically and abroad, including multiple presentations at national meetings of the AAPT. Dr. Jewett is the author of THE WORLD OF PHYSICS: MYSTERIES, MAGIC, AND MYTH, which provides many connections between physics and everyday experiences. In addition to his work on PHYSICS FOR SCIENTISTS AND ENGINEERS, he is the coauthor for PRINCIPLES OF PHYSICS, Fifth Edition, as well as GLOBAL ISSUES, a four-volume set of instruction manuals in integrated science for high school. Dr. Jewett enjoys playing keyboard with his all-physicist band, traveling, and collecting antique quack medical devices that can be used as demonstration apparatus in physics lectures. Most importantly, he relishes spending time with his wife Lisa and their children and grandchildren.

Part I: MECHANICS. 1. Physics and Measurement. Standards of Length, Mass, and Time. Matter and Model Building. Density and Atomic Mass. Dimensional Analysis. Conversion of Units. Estimates and Order-of-Magnitude Calculations. Significant Figures. 2. Motion in One Dimension. Position, Velocity, and Speed. Instantaneous Velocity and Speed. Acceleration. Motion Diagrams. One-Dimensional Motion with Constant Acceleration. Freely Falling Objects. Kinematic Equations Derived from Calculus. General Problem-Solving Strategy. 3. Vectors. Coordinate Systems. Vector and Scalar Quantities. Some Properties of Vectors. Components of a Vector and Unit Vectors. 4. Motion in Two Dimensions. The Position, Velocity, and Acceleration Vectors. Two-Dimensional Motion with Constant Acceleration. Projectile Motion. Uniform Circular Motion. Tangential and Radial Acceleration. Relative Velocity and Relative Acceleration. 5. The Laws of Motion. The Concept of Force. Newton's First Law and Inertial Frames. Mass. Newton's Second Law. The Gravitational Force and Weight. Newton's Third Law. Some Applications of Newton's Laws. Forces of Friction. 6. Circular Motion and Other Applications of Newton's Laws. Newton's Second Law Applied to Uniform Circular Motion. Nonuniform Circular Motion. Motion in Accelerated Frames. Motion in the Presence of Resistive Forces. Numerical Modeling in Particle Dynamics. 7. Energy and Energy Transfer. Systems and Environments. Work Done by a Constant Force. The Scalar Product of Two Vectors. Work Done by a Varying Force. Kinetic Energy and the Work--Kinetic Energy Theorem. The Non-Isolated System--Conservation of Energy. Situations Involving Kinetic Friction. Power. Energy and the Automobile. 8. Potential Energy. Potential Energy of a System. The Isolated System--Conservation of Mechanical Energy. Conservative and Nonconservative Forces. Changes in Mechanical Energy for Nonconservative Forces. Relationship Between Conservative Forces and Potential Energy. Energy Diagrams and Equilibrium of a System. 9. Linear Momentum and Collisions. Linear Momentum and Its Conservation. Impulse and Momentum. Collisions in One Dimension. Two-Dimensional Collisions. The Center of Mass. Motion of a System of Particles. Rocket Propulsion. 10. Rotation of a Rigid Object about a Fixed Axis. Angular Position, Velocity, and Acceleration. Rotational Kinematics: Rotational Motion with Constant Angular Acceleration. Angular and Linear Quantities. Rotational Kinetic Energy. Calculation of Moments of Inertia. Torque. Relationship Between Torque and Angular Acceleration. Work, Power, and Energy in Rotational Motion. Rolling Motion of a Rigid Object. 11. Angular Momentum. The Vector Product and Torque. Angular Momentum. Angular Momentum of a Rotating Rigid Object. Conservation of Angular Momentum. The Motion of Gyroscopes and Tops. Angular Momentum as a Fundamental Quantity. 12. Static Equilibrium and Elasticity. The Conditions for Equilibrium. More on the Center of Gravity. Examples of Rigid Objects in Static Equilibrium. Elastic Properties of Solids. 13. Universal Gravitation. Newton's Law of Universal Gravitation. Measuring the Gravitational Constant. Free-Fall Acceleration and the Gravitational Force. Kepler's Laws and the Motion of Planets. The Gravitational Field. Gravitational Potential Energy. Energy Considerations in Planetary and Satellite Motion. 14. Fluid Mechanics. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces and Archimedes's Principle. Fluid Dynamics. Bernoulli's Equation. Other Applications of Fluid Dynamics. Part II: OSCILLATIONS AND MECHANICAL WAVES. 15. Oscillatory Motion. Motion of an Object Attached to a Spring. Mathematical Representation of Simple Harmonic Motion. Energy of the Simple Harmonic Oscillator. Comparing Simple Harmonic Motion with Uniform Circular Motion. The Pendulum. Damped Oscillations/ Forced Oscillations. 16. Wave Motion. Propagation of a Disturbance. Sinusoida

×
Free shipping on orders over $35*

*A minimum purchase of $35 is required. Shipping is provided via FedEx SmartPost® and FedEx Express Saver®. Average delivery time is 1 – 5 business days, but is not guaranteed in that timeframe. Also allow 1 - 2 days for processing. Free shipping is eligible only in the continental United States and excludes Hawaii, Alaska and Puerto Rico. FedEx service marks used by permission."Marketplace" orders are not eligible for free or discounted shipping.

Learn more about the TextbookRush Marketplace.

×