Introduction to the Physics of Nuclei and Particles

ISBN-10: 0534392946
ISBN-13: 9780534392949
Edition: 2004
Authors: Richard Dunlap
List price: $199.95
30 day, 100% satisfaction guarantee

If an item you ordered from TextbookRush does not meet your expectations due to an error on our part, simply fill out a return request and then return it by mail within 30 days of ordering it for a full refund of item cost.

Learn more about our returns policy

Description: Timely and engaging, AN INTRODUCTION TO THE PHYSICS OF NUCLEI AND PARTICLES focuses on one of the most exciting areas of physics. Author Richard Dunlap has taught this course for the last ten years?during the last two of which he used this text  More...

what's this?
Rush Rewards U
Members Receive:
You have reached 400 XP and carrot coins. That is the daily max!

Study Briefs

Limited time offer: Get the first one free! (?)

All the information you need in one place! Each Study Brief is a summary of one specific subject; facts, figures, and explanations to help you learn faster.

Add to cart
Study Briefs
Periodic Table Online content $4.95 $1.99
Add to cart
Study Briefs
History of Western Art Online content $4.95 $1.99

Customers also bought


Book details

List price: $199.95
Copyright year: 2004
Publisher: Brooks/Cole
Publication date: 3/17/2003
Binding: Paperback
Pages: 1
Size: 6.25" wide x 9.25" long x 0.75" tall
Weight: 1.232
Language: English

Timely and engaging, AN INTRODUCTION TO THE PHYSICS OF NUCLEI AND PARTICLES focuses on one of the most exciting areas of physics. Author Richard Dunlap has taught this course for the last ten years?during the last two of which he used this text successfully in his own classroom. The author designed this text to provide flexibility and freedom for instructors teaching a one-semester course by including a wealth of problems as well as approximately 20% more material than is necessary for the average 14-week course. In order to ensure that the book is up-to-date and interesting for the students, the author has included recent research results whenever possible and has presented data from ongoing experiments. This is particularly relevant for fields in which there is considerable current research activity, such as neutrino masses and oscillations, quark masses and controlled fusion.

Richard A. Dunlap is a professor in the Department of Physics and Atmospheric Science at Dalhousie University and has a cross-appointment in the College of Sustainability. He received a B.S. in Physics from Worcester Polytechnic Institute (1974), an A.M. in Physics from Dartmouth College (1976) and a Ph.D. in Physics from Clark University (1981). Since 1981 he has been on the faculty at Dalhousie University. From 2001 to 2006 he was Killam Research Professor of Physics, and since 2009 he has been Director of the Dalhousie University Institute for Research in Materials. He currently is a member of the DREAMS Program (Dalhousie Research in Energy, Advanced Materials and Sustainability). Prof. Dunlap is author of three previous text books Experimental Physics: Modern Methods (Oxford 1988), The Golden Ratio and Fibonacci Numbers (World Scientific 1997) and An Introduction to the Physics of Nuclei and Particles (Brooks/Cole 2004). Over the years his research interests have included critical phenomena, magnetic materials, amorphous materials, quasicrystals, hydrogen storage, and superconductivity. His current research activities are primarily in the area of materials for advanced rechargeable batteries. He has published more than 280 refereed research papers.

Basic Concepts
Terminology and Definitions
Units and Dimensions
Sources of Information
Particles and Interactions
Classification of Subatomic Particles
Classification and Ranges of Interactions
Conservation Laws
Nuclear Properties and Models
Nuclear Composition and Size
Composition of the Nucleus
Rutherford Scattering
Charge Distribution of the Nucleus
Mass Distribution of the Nucleus
Binding Energy and the Liquid Drop Model
Definition and Properties of the Nuclear Binding Energy
The Liquid Drop Model
Beta Stability
Nucleon Separation Energies
The Shell Model
Overview of Atomic Structure
Evidence for Nuclear Shell Structure
The Infinite Square Well Potential
Other Forms of the Nuclear Potential
Spin-Orbit Coupling
Nuclear Energy Levels
Properties of the Nucleus
Ground State Spin and Parity
Excited Nuclear States
Mirror Nuclei
Electromagnetic Moments of the Nucleus
Electric Quadrupole Moments
Magnetic Dipole Moments
An Overview of the Collective Model
Nuclear Decays and Reactions
General Properties of Decay Processes
Decay Rates and Lifetimes
Quantum Mechanical Considerations
Radioactive Dating
Alpha Decay
Energetics of Alpha Decay
Theory of Alpha Decay
Angular Momentum Considerations
Beta Decay
Energetics of Beta Decay
Fermi Theory of Beta Decay
Fermi-Kurie Plots
Allowed and Forbidden Transitions
Parity Violation in Beta Decay
Double Beta Decay
Gamma Decay
Energetics of Gamma Decay
Classical Theory of Radiative Processes
Quantum Mechanical Description of Gamma Decay
Selection Rules
Internal Conversion
Nuclear Reactions
General Classification of Reactions and Conservation Laws
Inelastic Scattering
Nuclear Reactions
Deuteron Stripping Reactions
Neutron Reactions
Coulombic Effects
Fission Reactions
Basic Properties of Fission Processes
Induced Fission
Fission Processes in Uranium
Neutron Cross Sections for Uranium
Critical Mass for Chain Reactions
Moderators and Reactor Control
Reactor Stability
Reactor Design
Fusion Reactions
Fusion Processes
Fusion Cross Sections and Reaction Rates
Stellar Fusion Processes
Fusion Reactors
Progress in Controlled Fusion
Particle Physics
Particles and Interactions
Classification of Particles
Properties of Leptons
Feynman Diagrams
The Standard Model
Evidence for Quarks
Composition of Light Hadrons
Composition of Heavy Hadrons
More About Quarks
Color and Gluons
Particle Reactions and Decays
Reactions and Decays in the Context of the Quark Model
W[superscript plus or minus] and Z[superscript 0] Bosons
Quark Generation Mixing
Conservation Laws and Vertex Rules
Classification of Interactions
Transition Probabilities and Feynman Diagrams
Meson Production and Fragmentation
CP Violation in Neutral Meson Decays
Grand Unified Theories and the Solar Neutrino Problem
Grand Unified Theories
Solar Neutrinos
Neutrino Oscillations
Neutrino Masses
Physical Constants and Conversion Factors
Properties of Nuclides

Free shipping on orders over $35*

*A minimum purchase of $35 is required. Shipping is provided via FedEx SmartPost® and FedEx Express Saver®. Average delivery time is 1 – 5 business days, but is not guaranteed in that timeframe. Also allow 1 - 2 days for processing. Free shipping is eligible only in the continental United States and excludes Hawaii, Alaska and Puerto Rico. FedEx service marks used by permission."Marketplace" orders are not eligible for free or discounted shipping.

Learn more about the TextbookRush Marketplace.