Skip to content

Combustion

Best in textbook rentals since 2012!

ISBN-10: 0122858522

ISBN-13: 9780122858529

Edition: 3rd 1996 (Revised)

Authors: Irvin Glassman

List price: $128.00
Blue ribbon 30 day, 100% satisfaction guarantee!
what's this?
Rush Rewards U
Members Receive:
Carrot Coin icon
XP icon
You have reached 400 XP and carrot coins. That is the daily max!

Customers also bought

Book details

List price: $128.00
Edition: 3rd
Copyright year: 1996
Publisher: Elsevier Science & Technology Books
Publication date: 12/17/1996
Binding: Hardcover
Pages: 631
Size: 6.75" wide x 9.75" long x 1.50" tall
Weight: 2.288
Language: English

Prologue
Preface
Chemical Thermodynamics and Flame Temperatures
Introduction
Heats of reaction and formation
Free energy and the equilibrium constants
Flame temperature calculations
Analysis
Practical considerations
Sub- and super sonic combustion thermodynamics
Comparisons
Stagnation pressure considerations
Problems
Chemical Kinetics
Introduction
Rates of reactions and their temperature dependence
The Arrhenius rate expression
Transition state and recombination rate theories
Simultaneous interdependent reactions
Chain reactions
Pseudo-first-order reactions and the "fall-off" range
The partial equilibrium assumption
Pressure effect in fractional conversion
Chemical kinetics of large reaction mechanisms
Sensitivity analysis
Rate of production analysis
Coupled thermal and chemical reacting systems
Mechanism simplification
Problems
Explosive and General Oxidative Characteristics of Fuels
Introduction
Chain branching reactions and criteria for explosion
Explosion limits and oxidation characteristics of hydrogen
Explosion limits and oxidation characteristics of carbon monoxide
Explosion limits and oxidation characteristics of hydrocarbons
Organic nomenclature
Explosion limits
"Low-temperature" hydrocarbon oxidation mechanisms
The oxidation of aldehydes
The oxidation of methane
Low-temperature mechanism
High-temperature mechanism
The oxidation of higher-order hydrocarbons
Aliphatic hydrocarbons
Alcohols
Aromatic hydrocarbons
Supercritical effects
Problems
Flame Phenomena in Premixed Combustible Gases
Introduction
Laminar flame structure
The laminar flame speed
The theory of Mallard and Le Chatelier
The theory of Zeldovich, Frank-Kamenetskii, and Semenov
Comprehensive theory and laminar flame structure analysis
The laminar flame and the energy equation
Flame speed measurements
Experimental results: physical and chemical effects
Stability limits of laminar flames
Flammability limits
Quenching distance
Flame stabilization (low velocity)
Stability limits and design
Flame propagation through stratified combustible mixtures
Turbulent reacting flows and turbulent flames
The rate of reaction in a turbulent field
Regimes of turbulent reacting flows
The turbulent flame speed
Stirred reactor theory
Flame stabilization in high-velocity streams
Combustion in small volumes
Problems
Detonation
Introduction
Premixed and diffusion flames
Explosion, deflagration, and detonation
The onset of detonation
Detonation phenomena
Hugoniot relations and the hydrodynamic theory of detonations
Characterization of the Hugoniot curve and the uniqueness of the C-J point
Determination of the speed of sound in the burned gases for conditions above the C-J point
Calculation of the detonation velocity
Comparison of detonation velocity calculations with experimental results
The ZND structure of detonation waves
The structure of the cellular detonation front and other detonation phenomena parameters
The cellular detonation front
The dynamic detonation parameters
Detonation limits
Detonations in nongaseous media
Problems
Diffusion Flames
Introduction
Gaseous fuel jets
Appearance
Structure
Theoretical considerations
The Burke-Schumann development
Turbulent fuel jets
Burning of condensed phases
General mass burning considerations and the evaporation coefficient
Single fuel droplets in quiescent atmospheres
Burning of droplet clouds
Burning in convective atmospheres
The stagnant film case
The longitudinally burning surface
The flowing droplet case
Burning rates of plastics: The small B assumption and radiation effects
Problems
Ignition
Concepts
Chain spontaneous ignition
Thermal spontaneous ignition
Semenov approach of thermal ignition
Frank-Kamenetskii theory of thermal ignition
Forced ignition
Spark ignition and minimum ignition energy
Ignition by adiabatic compression and shock waves
Other ignition concepts
Hypergolicity and pyrophoricity
Catalytic ignition
Problems
Environmental Combustion Considerations
Introduction
The nature of photochemical smog
Primary and secondary pollutants
The effect of NO[subscript x]
The effect of SO[subscript x]
Formation and reduction of nitrogen oxides
The structure of the nitrogen oxides
The effect of flame structure
Reaction mechanisms of oxides of nitrogen
The reduction of NO[subscript x]
SO[subscript x] emissions
The product composition and structure of sulfur compounds
Oxidative mechanisms of sulfur fuels
Particulate formation
Characteristics of soot
Soot formation processes
Experimental systems and soot formation
Sooting tendencies
Detailed structure of sooting flames
Chemical mechanisms of soot formation
The influence of physical and chemical parameters on soot formation
Stratospheric ozone
The HO[subscript x] catalytic cycle
The NO[subscript x] catalytic cycle
The ClO[subscript x] catalytic cycle
Problems
Combustion of Nonvolatile Fuels
Carbon char, soot, and metal combustion
Metal combustion thermodynamics
The criterion for vapor-phase combustion
Thermodynamics of metal-oxygen systems
Thermodynamics of metal-air systems
Combustion synthesis
Diffusional kinetics
Diffusion-controlled burning rate
Burning of metals in nearly pure oxygen
Burning of small particles - diffusion versus kinetic limits
The burning of boron particles
Carbon particle combustion (C. R. Shaddix)
Practical carbonaceous fuels (C. R. Shaddix)
Devolatilization
Char combustion
Pulverized coal char oxidation
Gasification and oxy-combustion
Soot oxidation (C. R. Shaddix)
Problems
Appendixes
Thermochemical Data and Conversion Factors
Conversion factors and physical constants
Thermochemical data for selected chemical compounds
Thermochemical data for species included in reaction list of Appendix C
Adiabatic Flame Temperatures of Hydrocarbons
Adiabatic flame temperatures
Specific Reaction Rate Constants
H[subscript 2]/O[subscript 2] mechanism
CO/H[subscript 2]/O[subscript 2] mechanism
CH[subscript 2]O/CO/H[subscript 2]/O[subscript 2] mechanism
CH[subscript 3]OH/CH[subscript 2]O/CO/H[subscript 2]/O[subscript 2] mechanism
CH[subscript 4]/CH[subscript 3]OH/CH[subscript 2]O/CO/H[subscript 2]/O[subscript 2] mechanism
C[subscript 2]H[subscript 6]/CH[subscript 4]/CH[subscript 3]OH/CH[subscript 2]O/CO/H[subscript 2]/O[subscript 2] mechanism
Selected reactions of a C[subscript 3]H[subscript 8] oxidation mechanism
N[subscript x]O[subscript y]/CO/H[subscript 2]/O[subscript 2] mechanism
HCl/N[subscript x]O[subscript y]/CO/H[subscript 2]/O[subscript 2] mechanism
O[subscript 3]/N[subscript x]O[subscript y]/CO/H[subscript 2]/O[subscript 2] mechanism
SO[subscript x]/N[subscript x]O[subscript y]/CO/H[subscript 2]/O[subscript 2] mechanism
Bond Dissociation Energies of Hydrocarbons
Bond dissociation energies of alkanes
Bond dissociation energies of alkenes, alkynes, and aromatics
Bond dissociation energies of C/H/O compounds
Bond dissociation energies of sulfur-containing compounds
Bond dissociation energies of nitrogen-containing compounds
Bond dissociation energies of halocarbons
Flammability Limits in Air
Flammability limits of fuel gases and vapors in air at 25[degree]C and 1 atm
Laminar Flame Speeds
Burning velocities of various fuels at 25[degree]C air-fuel temperature (0.31 mol% H[subscript 2]O in air). Burning velocity S as a function of equivalence ratio [phi] in cm/s
Burning velocities of various fuels at 100[degree]C air-fuel temperature (0.31 mol% H[subscript 2]O in air). Burning velocity S as a function of equivalence ratio [phi] in cm/s
Burning velocities of various fuels in air as a function of pressure for an equivalence ratio of 1 in cm/s
Spontaneous Ignition Temperature Data
Spontaneous ignition temperature data
Minimum Spark Ignition Energies and Quenching Distances
Minimum spark ignition energy data for fuels in air at 1 atm pressure
Programs for Combustion Kinetics
Thermochemical parameters
Kinetic parameters
Transport parameters
Reaction mechanisms
Thermodynamic equilibrium
Temporal kinetics (Static and flow reactors)
Stirred reactors
Shock tubes
Premixed flames
Diffusion flames
Boundary layer flow
Detonations
Model analysis and mechanism reduction
Author Index
Subject Index