Engineering with Rubber : How to Design Rubber Components

ISBN-10: 1569902992

ISBN-13: 9781569902998

Edition: 2nd 2000

Authors: Alan N. Gent
List price: $99.95
30 day, 100% satisfaction guarantee

If an item you ordered from TextbookRush does not meet your expectations due to an error on our part, simply fill out a return request and then return it by mail within 30 days of ordering it for a full refund of item cost.

Learn more about our returns policy

Description:

Out of stock
what's this?
Rush Rewards U
Members Receive:
coins
coins
You have reached 400 XP and carrot coins. That is the daily max!

Study Briefs

Limited time offer: Get the first one free! (?)

All the information you need in one place! Each Study Brief is a summary of one specific subject; facts, figures, and explanations to help you learn faster.

Customers also bought

Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading

Book details

List price: $99.95
Edition: 2nd
Copyright year: 2000
Publisher: Hanser-Gardner Publications
Binding: Hardcover
Size: 6.75" wide x 9.50" long x 0.75" tall
Weight: 1.584
Language: English

Prefacep. v
Introductionp. 1
Rubber in Engineeringp. 2
Elastomersp. 2
Dynamic Applicationp. 3
General Design Principlesp. 4
Thermal Expansivity, Pressure, and Swellingp. 4
Specific Applications and Operating Principlesp. 5
Seal Lifep. 8
Seal Frictionp. 8
Acknowledgmentsp. 8
Referencesp. 9
Materials and Compoundsp. 11
Introductionp. 13
Elastomer Typesp. 13
General-Purpose Elastomersp. 13
Styrene-Butadiene Rubber (SBR)p. 13
Polyisoprene (NR, IR)p. 14
Polybutadiene (BR)p. 15
Specialty Elastomersp. 15
Polychloroprene (CR)p. 15
Acrylonitrile-Butadiene Rubber (NBR)p. 16
Hydrogenated Nitrile Rubber (HNBR)p. 16
Butyl Rubber (IIR)p. 16
Ethylene-Propylene Rubber (EPR, EPDM)p. 16
Silicone Rubber (MQ)p. 17
Polysulfide Rubber (T)p. 17
Chlorosulfonated Polyethylene (CSM)p. 17
Chlorinated Polyethylene (CM)p. 17
Ethylene-Methyl Acrylate Rubber (AEM)p. 18
Acrylic Rubber (ACM)p. 18
Fluorocarbon Rubbers (FKM)p. 18
Epichlorohydrin Rubber (ECO)p. 18
Urethane Rubberp. 18
Compoundingp. 19
Vulcanization and Curingp. 19
Sulfur Curingp. 19
Determination of Crosslink Densityp. 21
Influence of Crosslink Densityp. 22
Other Cure Systemsp. 23
Reinforcementp. 23
Anti-Degradantsp. 25
Ozone Attackp. 25
Oxidationp. 26
Process Aidsp. 28
Extendersp. 28
Tackifiersp. 29
Typical Rubber Compoundsp. 29
Bibliographyp. 33
Problemsp. 34
Answersp. 34
Elasticityp. 35
Introductionp. 37
Elastic Properties at Small Strainsp. 37
Elastic Constantsp. 37
Relation Between Shear Modulus G and Compositionp. 40
Stiffness of Componentsp. 42
Choice of Shear Modulusp. 42
Shear Deformation of Bonded Blocks and Hollow Cylindrical Tubesp. 42
Small Compressions or Extensions of Bonded Blocksp. 44
Maximum Permitted Loads in Tension and Compressionp. 46
Indentation of Rubber Blocks by Rigid Indentorsp. 47
Protrusion of Rubber Through a Hole in a Rigid Platep. 49
Large Deformationsp. 50
General Theory of Large Elastic Deformationsp. 50
Stress-Strain Relations in Selected Casesp. 51
General Relations Between Stress and Strainp. 51
Simple Extensionp. 51
Evaluation of the Strain Energy Function Wp. 52
Elastic Behavior of Filled Rubber Vulcanizatesp. 54
Equi-Biaxial Stretchingp. 56
Constrained Tension (Pure Shear)p. 57
Inflation of a Spherical Shell (Balloon)p. 58
Inflation of a Spherical Cavityp. 59
Second-Order Stressesp. 60
Simple Shearp. 60
Torsionp. 62
Molecular Theory of Rubber Elasticityp. 63
Elastic Behavior of a Single Molecular Strandp. 63
Elasticity of a Molecular Networkp. 64
Effective Density of Network Strandsp. 66
The Second Term in the Strain Energy Functionp. 66
Concluding Remarks on Molecular Theoriesp. 68
Acknowledgmentsp. 68
Referencesp. 68
Problemsp. 70
Answers to Selected Problemsp. 70
Dynamic Mechanical Propertiesp. 73
Introductionp. 74
Viscoelasticityp. 74
Dynamic Experimentsp. 78
Energy Considerationsp. 82
Motion of a Suspended Massp. 82
Experimental Techniquesp. 87
Forced Nonresonance Vibrationp. 87
Forced Resonance Vibrationp. 87
Free Vibration Methodsp. 87
Rebound Resiliencep. 87
Effect of Static and Dynamic Strain Levelsp. 88
Application of Dynamic Mechanical Measurementsp. 89
Heat Generation in Rubber Componentsp. 89
Vibration Isolationp. 89
Shock Absorbersp. 90
Effects of Temperature and Frequencyp. 90
Thixotropic Effects in Filled Rubber Compoundsp. 94
Acknowledgementsp. 96
Referencesp. 96
Problemsp. 96
Answersp. 97
Strengthp. 99
Introductionp. 100
Fracture Mechanicsp. 100
Analysis of the Test Piecesp. 102
The Strain Energy Concentration at a Crack Tipp. 103
Tear Behaviorp. 104
Crack Growth Under Repeated Loadingp. 109
The Fatigue Limit and the Effect of Ozonep. 111
Physical Interpretation of G[subscript 0]p. 113
Effects of Type of Elastomer and Fillerp. 114
Effect of Oxygenp. 114
Effects of Frequency and Temperaturep. 116
Nonrelaxing Effectsp. 116
Time-Dependent Failurep. 117
Ozone Attackp. 117
Tensile Strengthp. 121
Crack Growth in Shear and Compressionp. 122
Cavitation and Related Failuresp. 125
Conclusionsp. 126
Bibliographyp. 126
Problemsp. 129
Answersp. 131
Mechanical Fatiguep. 137
Introductionp. 139
Application of Fracture Mechanics to Mechanical Fatigue of Rubberp. 140
Initiation and Propagation of Cracksp. 142
Fatigue Crack Initiationp. 142
Fatigue Life and Crack Growthp. 143
Fatigue Crack Propagation: The Fatigue Crack Growth Characteristicp. 144
Fatigue Life Determinations from the Crack Growth Characteristicsp. 146
Fatigue Crack Growth Test Methodologyp. 148
Experimental Determination of Dynamic Tearing Energies for Fatigue Fatigue Crack Propagationp. 148
Kinetics of Crack Growthp. 149
Effects of Test Variables on Fatigue Crack Growth Characteristics and Dynamic Fatigue Lifep. 150
Waveformp. 150
Frequencyp. 150
Temperaturep. 150
Static Strain/Stressp. 152
Material Variables and Their Effect on Fatigue Crack Growthp. 154
Reinforcing Fillers and Compound Modulusp. 154
Elastomer Typep. 156
Vulcanizing Systemp. 157
Fatigue and Crack Growth of Rubber under Biaxial Stressesp. 158
Fatigue in Rubber Compositesp. 159
Effect of Wires, Cords, and Their Spacing on Fatigue Crack Propagationp. 160
Effect of Minimum Strain or Stressp. 160
Comparison of S-N Curve and Fatigue Crack Propagation Constants for Rubber-Wire Compositesp. 163
Fatigue of Two-Ply Rubber-Cord Laminatesp. 164
Fatigue Cracking of Rubber in Compression and Shear Applicationsp. 165
Crack Growth in Compressionp. 165
Crack Growth in Shearp. 167
Environmental Effectsp. 168
Modeling and Life Predictions of Elastomeric Componentsp. 169
Fatigue Crack Propagation in Thermoplastic Elastomersp. 170
Durability of Thermoplastic Elastomersp. 170
Summaryp. 172
Acknowledgmentsp. 173
Referencesp. 173
Problemsp. 174
Answersp. 175
Durabilityp. 177
Introductionp. 179
Creep, Stress Relaxation, and Setp. 180
Creepp. 181
Stress Relaxationp. 181
Physical Relaxationp. 182
Chemical Relaxationp. 183
Compression Set and Recoveryp. 184
Case Studyp. 185
Longevity of Elastomers in Airp. 186
Durability at Ambient Temperaturesp. 186
Sunlight and Weatheringp. 186
Ozone Crackingp. 187
Structural Bearings: Case Studiesp. 187
Natural Rubber Pads on a Rail Viaduct after 100 years of Servicep. 187
Laminated Bridge Bearings after 20 Years of Servicep. 189
Effect of Low Temperaturesp. 192
Glass Transitionp. 192
Crystallizationp. 192
Reversibility of Low Temperature Effectsp. 193
Effect of Elevated Temperaturesp. 193
Effect of Fluid Environmentsp. 195
Aqueous Liquidsp. 199
Hydrocarbon Liquidsp. 201
Hydrocarbon and Other Gasesp. 203
Effects of Temperature and Chemical Attackp. 207
Effect of Radiationp. 209
Durability of Rubber-Metal Bondsp. 209
Adhesion Testsp. 210
Rubber-Metal Adhesive Systemsp. 211
Durability in Salt Water: Role of Electrochemical Potentialsp. 212
Life Prediction Methodologyp. 214
Acknowledgementp. 217
Referencesp. 217
Problemsp. 218
Answersp. 220
Design of Componentsp. 223
Introductionp. 224
Shear and Compression Bearingsp. 226
Planar Sandwich Formsp. 226
Problemp. 230
Laminate Bearingsp. 231
Problemp. 231
Tube Form Bearings and Mountingsp. 233
Problemp. 233
Problemp. 236
Effective Shape Factorsp. 237
Vibration and Noise Controlp. 238
Vibration Background Informationp. 239
Design Requirementsp. 241
Sample Problemsp. 241
Problemp. 241
Problemp. 245
Problemp. 246
Practical Design Guidelinesp. 249
Summary and Acknowledgmentsp. 250
Nomenclaturep. 251
Referencesp. 251
Problems for Chapter 8p. 252
Solutions for Problems for Chapter 8p. 253
Finite Element Analysisp. 257
Introductionp. 259
Material Specificationp. 260
Metalp. 260
Elastomersp. 260
Linearp. 260
Non-Linearp. 265
Elastomer Material Model Correlationp. 274
ASTM 412 Tensile Correlationp. 274
Pure Shear Correlationp. 274
Bi-Axial Correlationp. 275
Simple Shear Correlationp. 276
Terminology and Verificationp. 276
Terminologyp. 276
Types of FEA Modelsp. 277
Model Buildingp. 278
Modeling Hints for Non-Linear FEAp. 278
Boundary Conditionsp. 279
Solutionp. 280
Tangent Stiffnessp. 280
Newton-Raphsonp. 281
Non-Linear Material Behaviorp. 281
Visco-Elasticity (See Chapter 4)p. 281
Model Verificationp. 282
Resultsp. 282
Linear Verificationp. 283
Classical Verification - Non-Linearp. 283
Example Applicationsp. 287
Positive Drive Timing Beltp. 287
Dock Fenderp. 288
Rubber Bootp. 289
Bumper Designp. 291
Laminated Bearingp. 293
Down Hole Packerp. 297
Bonded Sandwich Mountp. 297
O-Ringp. 299
Elastomer Hose Modelp. 301
Sample Beltp. 301
Referencesp. 304
Tests and Specificationsp. 307
Introductionp. 309
Standard Test Methodsp. 309
Purpose of Testingp. 309
Test Piece Preparationp. 310
Time Between Vulcanization and Testingp. 310
Scope of This Chapterp. 310
Measurement of Design Parametersp. 311
Young's Modulusp. 311
Shear Modulusp. 313
Creep and Stress Relaxationp. 315
Creepp. 316
Stress Relaxationp. 316
Quality Control Testsp. 317
Hardnessp. 317
Durometerp. 317
International Rubber Hardnessp. 318
Tensile Propertiesp. 319
Compression Setp. 321
Accelerated Agingp. 322
Aging in an Air Ovenp. 322
Ozone Crackingp. 323
Liquid Resistancep. 324
Factors in Swellingp. 325
Swelling Testsp. 325
Adhesion to Rigid Substratesp. 325
Processabilityp. 327
Dynamic Propertiesp. 328
Resiliencep. 330
Yerzley Oscillographp. 331
Resonant Beamp. 332
Servohydraulic Testersp. 333
Electrodynamic Testersp. 334
Preferred Test Conditionsp. 335
Tests for Tiresp. 335
Bead Unseating Resistancep. 336
Tire Strengthp. 336
Tire Endurancep. 338
High Speed Performancep. 338
Specificationsp. 338
Classification Systemp. 339
Typep. 339
Classp. 340
Further Descriptionp. 341
Tolerancesp. 342
Molded Productsp. 342
Extruded Productsp. 344
Load-Deflection Characteristicsp. 345
Rubber Bridge Bearingsp. 345
Functionp. 345
Design Codep. 346
Materials Specificationp. 347
Pipe Sealing Ringsp. 348
Functionp. 348
Materialsp. 349
Tensile Propertiesp. 349
Compression Setp. 349
Low Temperature Flexibilityp. 350
Oven Agingp. 350
Oil Resistancep. 350
Closing Remarksp. 351
Referencesp. 351
Problemsp. 353
Answersp. 354
Tables of Physical Constantsp. 357
Indexp. 361
Table of Contents provided by Syndetics. All Rights Reserved.
×
Free shipping on orders over $35*

*A minimum purchase of $35 is required. Shipping is provided via FedEx SmartPost® and FedEx Express Saver®. Average delivery time is 1 – 5 business days, but is not guaranteed in that timeframe. Also allow 1 - 2 days for processing. Free shipping is eligible only in the continental United States and excludes Hawaii, Alaska and Puerto Rico. FedEx service marks used by permission."Marketplace" orders are not eligible for free or discounted shipping.

Learn more about the TextbookRush Marketplace.

×