Virus Dynamics Mathematical Principles of Immunology and Virology

ISBN-10: 0198504179

ISBN-13: 9780198504177

Edition: 2000

List price: $110.00 Buy it from $65.10
This item qualifies for FREE shipping

*A minimum purchase of $35 is required. Shipping is provided via FedEx SmartPost® and FedEx Express Saver®. Average delivery time is 1 – 5 business days, but is not guaranteed in that timeframe. Also allow 1 - 2 days for processing. Free shipping is eligible only in the continental United States and excludes Hawaii, Alaska and Puerto Rico. FedEx service marks used by permission."Marketplace" orders are not eligible for free or discounted shipping.

30 day, 100% satisfaction guarantee

If an item you ordered from TextbookRush does not meet your expectations due to an error on our part, simply fill out a return request and then return it by mail within 30 days of ordering it for a full refund of item cost.

Learn more about our returns policy

Description: We know, down to the tiniest details, the molecular structure of the human immunodeficiency virus (HIV). Yet despite this tremendous accomplishment, and despite other remarkable advances in our understanding of individual viruses and cells of the immune system, we still have no agreed understanding of the ultimate course and variability of the pathogenesis of AIDS. Gaps in our understanding like these impede our efforts towards developing effective therapies and preventive vaccines. Martin Nowak and Robert M May describe the emerging field of theoretical immunology in this accessible and well- written text. Using mathematical modelling techniques, the authors set out their ideas about how populations of viruses and populations of immune system cells may interact in various circumstances, and how infectious diseases spread within patients. They explain how this approach to understanding infectious diseases can reveal insights into the dynamics of viral and other infections, and the interactions between infectious agents and immune responses. The book is structured around the examples of HIV/AIDS and Hepatitis B virus, although the approaches described will be more widely applicable. The authors use mathematical tools to uncover the detailed dynamics of the infection and the effects of antiviral therapy. Models are developed to describe the emergence of drug resistance, and the dynamics of immune responses, viral evolution, and mutation. The practical implications of this work for optimisation of the design of therapy and vaccines are discussed. The book concludes with a glance towards the future of this fascinating, and potentially highly useful, field of study.

New Starting from $91.65
what's this?
Rush Rewards U
Members Receive:
coins
coins
You have reached 400 XP and carrot coins. That is the daily max!

Study Briefs

Limited time offer: Get the first one free! (?)

All the information you need in one place! Each Study Brief is a summary of one specific subject; facts, figures, and explanations to help you learn faster.

Add to cart
Study Briefs
Periodic Table Online content $4.95 $1.99
Add to cart
Study Briefs
Calculus 1 Online content $4.95 $1.99
Add to cart
Study Briefs
Medical Terminology Online content $4.95 $1.99

Customers also bought

Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading

Book details

List price: $110.00
Copyright year: 2000
Publisher: Oxford University Press, Incorporated
Publication date: 1/25/2001
Binding: Paperback
Pages: 250
Size: 6.25" wide x 9.00" long x 0.50" tall
Weight: 0.792
Language: English

Robert May is Professor of Logic and Philosophy of Science, Linguistics, and Philosophy at the University of California, Irvine. Fiengo and May are the authors of Indices and Identity (MIT Press, 1994).

Introduction: viruses, immunity, equations
HIV
The basic model of virus dynamics
Anti-viral drug therapy
Dynamics of hepatitis B virus
Dynamics of immune responses
How fast do immune responses eliminate infected cells?
What is a quasispecies?
The frequency of resistant mutant virus before anti-viral therapy
Emergence of drug resistance
Timing the emergence of resistance
Simple antigenic variation
Advanced antigenic variation
Multiple epitopes
Everything we know so far and beyond
Dynamics of resistance in different types of infected cells
Analysis of multiple epitope dynamics
References
Index
×
Free shipping on orders over $35*

*A minimum purchase of $35 is required. Shipping is provided via FedEx SmartPost® and FedEx Express Saver®. Average delivery time is 1 – 5 business days, but is not guaranteed in that timeframe. Also allow 1 - 2 days for processing. Free shipping is eligible only in the continental United States and excludes Hawaii, Alaska and Puerto Rico. FedEx service marks used by permission."Marketplace" orders are not eligible for free or discounted shipping.

Learn more about the TextbookRush Marketplace.

×