Engineering Vibration

ISBN-10: 0132281732
ISBN-13: 9780132281737
Edition: 3rd 2008
Authors: Daniel J. Inman
List price: $216.00
30 day, 100% satisfaction guarantee

If an item you ordered from TextbookRush does not meet your expectations due to an error on our part, simply fill out a return request and then return it by mail within 30 days of ordering it for a full refund of item cost.

Learn more about our returns policy

Description: Serving as both text and reference manual, this text connects traditional design-oriented topics, the introduction of modal analysis, and the use of MATLAB. The author provides an unequaled combination of the study of conventional vibration with the  More...

what's this?
Rush Rewards U
Members Receive:
coins
coins
You have reached 400 XP and carrot coins. That is the daily max!

Study Briefs

Limited time offer: Get the first one free! (?)

All the information you need in one place! Each Study Brief is a summary of one specific subject; facts, figures, and explanations to help you learn faster.

Customers also bought

Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading
Loading

Book details

List price: $216.00
Edition: 3rd
Copyright year: 2008
Publisher: Prentice Hall PTR
Publication date: 5/9/2007
Binding: Hardcover
Pages: 688
Size: 7.25" wide x 9.25" long x 1.00" tall
Weight: 2.706
Language: English

Serving as both text and reference manual, this text connects traditional design-oriented topics, the introduction of modal analysis, and the use of MATLAB. The author provides an unequaled combination of the study of conventional vibration with the use of vibration design, analysis and testing in various engineering applications.Special-interest windows utilized throughout the text placed at points where prior or background information summaries are required. Remind readers of essential information pertinent to the text material, preventing them from flipping to previous chapters or reference texts for formulas or other information. Examines topics that reflect some of the recent advances in vibration technology, changes in ABET criteria and the increased importance of both engineering design and modal analysis. Incorporates MATLAB Vibration Toolbox throughout allowing readers to conduct and explore vibration analysis. Toolbox offers professional quality computer analyses including basics, introduction to model analysis with actual experimental data files and finite elements. Readers are challenged with over 65 computer problems (645 problems in all) including use of manufactures design charts, measurement analysis, and matrix eigenvalue computing for frequencies and modes.Ideal for readers with an interest in Mechanical Engineering, Civil Engineering, Aerospace Engineering and Mechanics.

Introduction
Introduction to Free Vibration
Harmonic Motion
Viscous Damping
Modeling and Energy Methods
Stiffness
Measurement
Design Considerations
Stability
Numerical Simulation of the Time Response
Coulomb Friction and the Pendulum
Response to Harmonic Excitation
Harmonic Excitation of Undamped Systems
Harmonic Excitation of Damped Systems
Alternative Representations
Base Excitation
Rotating Unbalance
Measurement
Other Forms of Damping
Numerical Simulation and Design
Nonlinear Response Properties
General Forced Response
Impulse Response Function
Response to an Arbitrary Input
Response to an Arbitrary Periodic Input
Transform Methods
Response to Random Inputs
Shock Spectrum
Measurement via Transfer Functions
Stability
Numerical Simulation of the Response
Nonlinear Response Properties
Multiple-Degree-of-Freedom Systems
Two-Degree-of-Freedom Model (Undamped). Eigenvalues and Natural Frequencies
Modal Analysis
More Than Two Degrees of Freedom
Systems with Viscous Damping
Modal Analysis of the Forced Response
Lagrange's Equations
Examples
Computational Eigenvalue Problems of Vibration
Numerical Simulation of the Time Response
Design for Vibration Suppression
Acceptable Levels of Vibration
Vibration Isolation
Vibration Absorbers
Damping in Vibration Absorption
Optimization
Viscoelastic Damping Treatments
Critical Speeds of Rotating Disks
Active Vibration Suppression
Practical Isolation Design
Distributed-Parameter Systems
Vibration of a String of Cable
Modes and Natural Frequencies
Vibration of Rods and Bars
Torsional Vibration
Bending Vibration of a Beam
Vibration of Membranes and plates
Models of Damping
Modal Analysis and the Forced Response
Vibration Testing and Experimental Modal Analysis
Measurement Hardware
Digital Signal Processing
Random Signal Analysis in Testing
Modal Data Extraction
Model Parameter by Circle Fitting
Mode Shape Measurement
Vibration Testing for Endurance and Diagnostics
Operational Deflection Shape Measurement
Finite Element Method
Example: The Bar
Three-Element Bar
Beam Elements
Lumped Mass Matrices
Trusses
Model Reduction
Complex Numbers and Functions
Laplace Transforms
Matrix Basics
The Vibration Literature
List of Symbols
Introduction to MATLAB?, Mathcad?, and Mathematica?
Engineering Vibration Toolbox and Web Support
References
Answers to Selected Problems
Index

×
Free shipping on orders over $35*

*A minimum purchase of $35 is required. Shipping is provided via FedEx SmartPost® and FedEx Express Saver®. Average delivery time is 1 – 5 business days, but is not guaranteed in that timeframe. Also allow 1 - 2 days for processing. Free shipping is eligible only in the continental United States and excludes Hawaii, Alaska and Puerto Rico. FedEx service marks used by permission."Marketplace" orders are not eligible for free or discounted shipping.

Learn more about the TextbookRush Marketplace.

×