Skip to content

Aerodynamics for Engineers

Best in textbook rentals since 2012!

ISBN-10: 0132272687

ISBN-13: 9780132272681

Edition: 5th 2009

Authors: John J. Bertin, Russell M. Cummings

List price: $210.00
Blue ribbon 30 day, 100% satisfaction guarantee!
what's this?
Rush Rewards U
Members Receive:
Carrot Coin icon
XP icon
You have reached 400 XP and carrot coins. That is the daily max!

Description:

KEY BENEFIT: From low-speed through hypersonic flight, this book merges fundamental fluid mechanics, experimental techniques, and computational fluid dynamics techniques to build a solid foundation in aerodynamic applications. Many references are recent publications by the worldrsquo;s finest aerodynamicists with expertise in subsonic, transonic, supersonic, and hypersonic aerodynamics.KEY TOPICS: Starts the new edition with a fun, readable, and motivational presentation on aircraft performance using material on Specific Excess Power (taught to all cadets at the U.S. Air Force Academy). Adds new sections to later chapters, presenting new real-world applications. Includes a CD-ROMwith Excel…    
Customers also bought

Book details

List price: $210.00
Edition: 5th
Copyright year: 2009
Publisher: Prentice Hall PTR
Publication date: 6/18/2008
Binding: Hardcover
Pages: 752
Size: 7.25" wide x 9.50" long x 1.25" tall
Weight: 2.684

Russell M. Cummings is a professor of aeronautics at the US Air Force Academy, where he teaches fluid mechanics, aerodynamics, and numerical methods, in addition to computational aerodynamics. Professor Cummings is the coauthor of Aerodynamics for Engineers, 6th edition, and is also professor emeritus of aerospace engineering at California Polytechnic State University. Professor Cummings has specialized in high angle of attack aerodynamics and manoeuvring aircraft simulation for most of his career.

Fluid Properties
Concept of a Fluid
Fluid as a Continuum
Fluid Properties
Pressure Variation in a Static Fluid Medium
The Standard Atmosphere
Fundamentals of Fluid Mechanics
Introduction to Fluid Dynamics
Conservation of Mass
Conservation of Linear Momentum
Applications to Constant-Property Flows
Reynolds Number and Mach Number as Similarity Parameters
Concept of the Boundary Layer
Conservation of Energy
First Law of Thermodynamics
Derivation of the Energy Equation
Dynamics of an Incompressible, Inviscid Flow Field
Inviscid Flows
Bernoulli's Equation
Use of Bernoulli's Equation to Determine Airspeed
The Pressure Coefficient
Circulation
Irrotational Flow
Kelvin's Theorem
Incompressible, Irrotational Flow
Stream Function in a Two-Dimensional, Incompressible Flow
Relation Between Streamlines and Equipotential Lines
Superposition of Flows
Elementary Flows
Adding Elementary Flows to Describe Flow Around a Cylinder
Lift and Drag Coefficients as Dimensionless Flow-Field Parameters
Flow Around a Cylinder with Circulation
Source Density Distribution on the Body Surface
Incompressible, Axisymmetric Flow
Viscous Boundary Layers
Equations Governing the Boundary Layer for a Steady, Two-Dimensional, Incompressible Flow
Boundary Conditions
Incompressible, Laminar Boundary Layer
Boundary-Layer Transition
Incompressible, Turbulent Boundary Layer
Eddy Viscosity and Mixing Length Concepts
Integral Equations for a Flat-Plate Boundary Layer
Thermal Boundary Layer for Constant-Property Flows
Characteristic Parameters for Airfoil and Wing Aerodynamics
Characterization of Aerodynamic Forces and Moments
Airfoil Geometry Parameters
Wing-Geometry Parameters
Aerodynamic Force and Moment Coefficients
Wings of Finite Span
Incompressible Flows around Airfoils of Infinite Span
General Comments
Circulation and the Generation of Lift
General Thin-Airfoil Theory
Thin, Flat-Plate Airfoil (Symmetric Airfoil). Thin, Cambered Airfoil
High-Lift Airfoil Sections
Multielement Airfoil Sections for Generating High Lift
High-Lift Military Airfoils
Incompressible Flows about Wings of Finite Span
General Comments
Vortex System
Lifting-Line Theory for Unswept Wings
Panel Methods
Vortex Lattice Method
Factors Affecting Drag Due-to-Lift at Subsonic Speeds
Delta Wings
Leading-Edge Extensions
Asymmetric Loads on the Fuselage at High Angles of Attack
Flow Fields for Aircraft at High Angles of Attack
Dynamics of a Compressible Flow Field
Thermodynamic Concepts
Adiabatic Flow in a Variable-Area Streamtube
Isentropic Flow in a Variable-Area
Characteristic Equations and Prandtl-Meyer Flow
Shock Waves
Viscous Boundary Layer
Compressible, Subsonic Flows and Transonic Flows
Compressible, Subsonic Flow
Transonic Flow Past Unswept Airfoils
Swept Wings at Transonic Speeds
Forward Swept Wing
Transonic Aircraft
Two-Dimensional Supersonic Flows around Thin Airfoil
Linear Theory
Second-Order Theory (Busemann's Theory). Shock-Expansion Technique
Supersonic Flows Over Wings and Airplane Configurations
General Remarks About Lift and Drag
General Remarks About Supersonic Wings
Governing Equation and Boundary Conditions
Consequences of Linearity
Solution Methods
Conical-Flow Method
Singularity-Distribution Method
Design Considerations for Supersonic Aircraft
Some Comments About the Design of the SST and of the HSCT. Aerodynamic Interaction
Aerodynamic Analysis for Complete Configurations in a Supersonic Stream
Hypersonic Flows.</B