Schaum's Outline of Advanced Mathematics for Engineers and Scientists

ISBN-10: 0070602166
ISBN-13: 9780070602168
Edition: 1971
Author(s): Murray R. Spiegel
Description: Readers can start by reviewing the fundamental concepts of algebra, trigonometry, analytic geometry and calculus or refer to these as needed. This book then guides students and practitioners to an understanding of ordinary differential equations,  More...
List price: $18.95
30 day, 100% Satisfaction Guarantee

what's this?
Rush Rewards U
Members Receive:
coins
coins
You have reached 400 XP and carrot coins. That is the daily max!
the “We U So Here’s $10K for School” giveaway Get an entry for every item you buy, rent, or sell.
Study Briefs
The first one is FREE! All the information you need in one place—a subject summary in digital form. For a limited time, add a Study Brief to your cart with a book purchase or rental and the discount will be applied at checkout.
Study Briefs
Periodic Table
?
Digital only List price: $4.95
Sale price: $1.99
Study Briefs
Calculus 1
?
Digital only List price: $4.95
Sale price: $1.99
Study Briefs
Algebra
?
Digital only List price: $4.95
Sale price: $1.99
Study Briefs
Basic Electronics and Circuitry
?
Digital only List price: $4.95
Sale price: $1.99
Study Briefs
Introduction to Logic
?
Digital only List price: $4.95
Sale price: $1.99
Loading
Customers Also Bought

List Price: $18.95
Copyright Year: 1971
Publisher: McGraw-Hill Companies, The
Binding: Hardcover
Pages: 416
Size: 8.50" wide x 11.00" long x 0.75" tall
Weight: 1.628
Language: English

Readers can start by reviewing the fundamental concepts of algebra, trigonometry, analytic geometry and calculus or refer to these as needed. This book then guides students and practitioners to an understanding of ordinary differential equations, Laplace transforms, Fourier series, complex variables, conforming mapping and more. The hundreds of problems with detailed solutions let readers master the applications of these theorems and concepts. Hundreds of additional problems with answers reinforce learning and help sharpen skills.

Review of Fundamental Concepts
Real numbers
Rules of algebra
Functions
Special types of functions
Limits
Continuity
Derivatives
Differentiation formulas
Integrals
Integration formulas
Sequences and series
Uniform convergence
Taylor series
Functions of two or more variables
Partial derivatives
Taylor series for functions of two or more variables
Linear equations and determinants
Maxima and minima
Method of Lagrange multipliers
Leibnitz's rule for differentiating an integral
Multiple integrals
Complex numbers
Ordinary Differential Equations
Definition of a differential equation
Order of a differential equation
Arbitrary constants
Solution of a differential equation
Differential equation of a family of curves
Special first order equations and solutions
Equations of higher order
Existence and uniqueness of solutions
Applications of differential equations
Some special applications
Mechanics
Electric circuits
Orthogonal trajectories
Deflection of beams
Miscellaneous problems
Numerical methods for solving differential equations
Linear Differential Equations
General linear differential equation of order n
Existence and uniqueness theorem
Operator notation
Linear operators
Fundamental theorem on linear differential equations
Linear dependence and Wronskians
Solutions of linear equations with constant coefficients
Non-operator techniques
The complementary or homogeneous solution
The particular solution
Method of undetermined coefficients
Method of variation of parameters
Operator techniques
Method of reduction of order
Method of inverse operators
Linear equations with variable coefficients
Simultaneous differential equations
Applications
Laplace Transforms
Definition of a Laplace transform
Laplace transforms of some elementary functions
Sufficient conditions for existence of Laplace transforms
Inverse Laplace transforms
Laplace transforms of derivatives
The unit step function
Some special theorems on Laplace transforms
Partial fractions
Solutions of differential equations by Laplace transforms
Applications to physical problems
Laplace inversion formulas
Vector Analysis
Vectors and scalars
Vector algebra
Laws of vector algebra
Unit vectors
Rectangular unit vectors
Components of a vector
Dot or scalar product
Cross or vector product
Triple products
Vector functions
Limits, continuity and derivatives of vector functions
Geometric interpretation of a vector derivative
Gradient, divergence and curl
Formulas involving [down triangle, open]
Orthogonal curvilinear coordinates
Jacobians
Gradient, divergence, curl and Laplacian in orthogonal curvilinear
Special curvilinear coordinates
Multiple, Line and Surface Integrals and Integral Theorems
Double integrals
Iterated integrals
Triple integrals
Transformations of multiple integrals
Line integrals
Vector notation for line integrals
Evaluation of line integrals
Properties of line integrals
Simple closed curves
Simply and multiply-connected regions
Green's theorem in the plane
Conditions for a line integral to be independent of the path
Surface integrals
The divergence theorem
Stokes' theorem
Fourier Series
Periodic functions
Fourier series
Dirichlet conditions
Odd and even functions
Half range Fourier sine or cosine series
Parseval's identity
Differentiation and integration of Fourier series
Complex notation for Fourier series
Complex notation for Fourier series
Orthogonal functions
Fourier Integrals
The Fourier integral
Equivalent forms of Fourier's integral theorem
Fourier transforms
Parseval's identities for Fourier integrals
The convolution theorem
Gamma, Beta and Other Special Functions
The gamma function
Table of values and graph of the gamma function
Asymptotic formula for [Gamma](n)
Miscellaneous results involving the gamma function
The beta function
Dirichlet integrals
Other special functions
Error function
Exponential integral
Sine integral
Cosine integral
Fresnel sine integral
Fresnel cosine integral
Asymptotic series or expansions
Bessel Functions
Bessel's differential equation
Bessel functions of the first kind
Bessel functions of the second kind
Generating function for J[subscript n](x)
Recurrence formulas
Functions related to Bessel functions
Hankel functions of first and second kinds
Modified Bessel functions
Ber, bei, ker, kei functions
Equations transformed into Bessel's equation
Asymptotic formulas for Bessel functions
Zeros of Bessel functions
Orthogonality of Bessel functions
Series of Bessel functions
Legendre Functions and Other Orthogonal Functions
Legendre's differential equation
Legendre polynomials
Generating function for Legendre polynomials
Recurrence formulas
Legendre functions of the second kind
Orthogonality of Legendre polynomials
Series of Legendre polynomials
Associated Legendre functions
Other special functions
Hermite polynomials
Laguerre polynomials
Sturm-Liouville systems
Partial Differential Equations
Some definitions involving partial differential equations
Linear partial differential equations
Some important partial differential equations
Heat conduction equation
Vibrating string equation
Laplace's equation
Longitudinal vibrations of a beam
Transverse vibrations of a beam
Methods of solving boundary-value problems
General solutions
Separation of variables
Laplace transform methods
Complex Variables and Conformal Mapping
Functions
Limits and continuity
Derivatives
Cauchy-Riemann equations
Integrals
Cauchy's theorem
Cauchy's integral formulas
Taylor's series
Singular points
Poles
Laurent's series
Residues
Residue theorem
Evaluation of definite integrals
Conformal mapping
Riemann's mapping theorem
Some general transformations
Mapping of a half plane on to a circle
The Schwarz-Christoffel transformation
Solutions of Laplace's equation by conformal mapping
Complex Inversion Formula for Laplace Transforms
The complex inversion formula
The Bromwich contour
Use of residue theorem in finding inverse Laplace transforms
A sufficient condition for the integral around [Gamma] to approach zero
Modification of Bromwich contour in case of branch points
Case of infinitely many singularities
Applications to boundary-value problems
Matrices
Definition of a matrix
Some special definitions and operations involving matrices
Determinants
Theorems on determinants
Inverse of a matrix
Orthogonal and unitary matrices
Orthogonal vectors
Systems of linear equations
Systems of n equations in n unknowns
Cramer's rule
Eigenvalues and eigenvectors
Theorems on eigenvalues and eigenvectors
Calculus of Variations
Maximum or minimum of an integral
Euler's equation
Constraints
The variational notation
Generalizations
Hamilton's principle
Lagrange's equations
Sturm-Liouville systems and Rayleigh-Ritz methods
Operator interpretation of matrices
Index

×
Free shipping on orders over $35*

*A minimum purchase of $35 is required. Shipping is provided via FedEx SmartPost® and FedEx Express Saver®. Average delivery time is 1 – 5 business days, but is not guaranteed in that timeframe. Also allow 1 - 2 days for processing. Free shipping is eligible only in the continental United States and excludes Hawaii, Alaska and Puerto Rico. FedEx service marks used by permission."Marketplace" orders are not eligible for free or discounted shipping.

Learn more about the TextbookRush Marketplace.

×